How do I find the limit of a sequence that is expressed as a fraction?

There are a number of ways of looking at the limiting behaviour of a fraction. Let’s look at three examples:1) a(n) = 2n+1/7n —> divide into two separate terms, that both clearly converge. 2) b(n) = 2/( n^2-1) = (2) x (1)/(n+1)(n-1) = (2) ((A/n+1)+(B/n-1)) = (2) ((-1/n+1)+(1/n-1)) —> Partial fractions method with difference of two squares. 3) c(n) = 8n+7 / (x+2)(x-1) = 3/x+2 + 5/x-1 —> Partial fractions (include other rules too).

Answered by Zayn S. Maths tutor

2448 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find an angle in a right-angled triangle when you are given two of its side's lengths?


Differentiate f(x) = 14*(x^2)*(e^(x^2))


The first three terms of an arithmetic series are p, 5p – 8, and 3p + 8 respectively. (a) Show that p=4 (b) Find the value of the 50th term in the series.


Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences