Find the gradient of the tangent to the line y=(x-2)^2 at the point that it intercepts the y-axis

First find the coordinates of the point in question:We know x=0By plugging this into the equation of the line we get y=(0-2)2 = (-2)2 = 4Therefore the point is (0,4)
To find the gradient of a line, we differentiate the equation of the line:By substitution -> y=u2 , u=x-2dy/dx=dy/du.du/dxdy/du = 2u , du/dx=1Therefore dy/dx =2u=2x-4Subbing in known coordinate into this equation we get:dy/dx(x=0,y=4) = -4Answer = -4

Answered by Alec J. Maths tutor

3288 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate x/(x^2+2)


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0 (a) Find (i) dy/d x (ii) d^2y/dx^2 (b) Verify that C has a stationary point when x = 4 (c) Determine the nature of this stationary point, giving a reason for your answer.


Solve the equation x^6 + 26x^3 − 27 = 0


y=4sin(kx) write down dy/dx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences