Find the exact solution to ln(2y+5) = 2 + ln(4-y)

Solution is y = 4e2 - 5 /2+e2
By applying log laws we can reach the following:
ln(2y+5/4-y) = 2
Given that ln x = log e x :e2 = 2y+5/4-y
Solve linearly :
2y+5 = e2(4-y)
2y+5 = 4e2 - ye2
2y + ye2= 4e2 -5
y(2 + e2) = 4e2 - 5
y = 4e2 - 5 /2+e2

MH
Answered by Michael H. Maths tutor

8191 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


Question 6 from Aqa 2017 June paper for C4, the vector question


Differentiate y = x^2 - 2x-3 + e^3x + 2ln(x)


Find the exact solution, in its simplest form, to the equation ln(4y + 7) = 3 + ln(2 – y) (Core Maths 3 Style Question)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences