Find the roots of this equation: y=(8-x)lnx

To find the roots, let y=0 and find the places where the graph crosses the x-axis. When y=0, (8-x)lnx =0. This can be solved by splitting the terms and putting each =0. This is because if the answer is 0, one or both of the two things multiplied together must be equal to 0. Therefore, (8-x)=0 and lnx=0. These solve to give x=8 and x=1.

ES
Answered by Ella S. Maths tutor

5292 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2


if y= e^(5x) what is dy/dx


The equation f(x) =x^3 + 3x is drawn on a graph between x = 0 and x = 2. The graph is then rotated around the x axis by 2π to form a solid. What is the volume of this solid?


A curve has equation y=2x^3. Find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning