Find the roots of this equation: y=(8-x)lnx

To find the roots, let y=0 and find the places where the graph crosses the x-axis. When y=0, (8-x)lnx =0. This can be solved by splitting the terms and putting each =0. This is because if the answer is 0, one or both of the two things multiplied together must be equal to 0. Therefore, (8-x)=0 and lnx=0. These solve to give x=8 and x=1.

ES
Answered by Ella S. Maths tutor

4768 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = e^x + 10sin(4x), find the value of the second derivative of this equation at the point x = pi/4.


Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?


b) The tangent to C at P meets the coordinate axes at the points Q and R. Show that the area of the triangle OQR, where O is the origin, is 9/(3-e)


Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences