The line y = 3x-4 intersects the curve y = x^2 - a, where a is an unknown constant number. Find all possible values of a.

For the line and the curve to intersect we need the for the following system of equations to have a solution. y = 3x AND y = x2 - aThe solution of the system of equations is found by solving x^2 - 3x - a = 0. (Interested in real numbers only)The solutions of a quadratic equation of the form ax^2 + bx + c = 0 can be obtained via the formula (-b +- sqrt(b^2 - 4ac) ) / (2a).The formula results in a valid (/real) value only when b^2 - 4ac >=0, which in our case is equivalent to 9 + 4a >= 0.As we are given that the two curve intersect, we must have 9 + 4a >= 0, and thus a can be any value greater or equal to -9/4.

HK
Answered by Hasnat K. Further Mathematics tutor

3413 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Rationalise and simplify (root(3) - 7)/(root(3) + 1) . Give your answer in the form a + b*root(3) where a, b are integers.


Solve x^(-1/4) = 0.2


Consider the Matrix M (below). Find the determiannt of the matrix M by using; (a) cofactor expansion along the first row, (b) cofactor expansion along the second column


A particle is moving in a straight line from A to B with constant acceleration 4m/s^2. The velocity of the particle at A is 3m/s in the direction AB. The velocity of the particle at B is 18m/s in the same direction/ Find the distance from A to B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning