n is an integer greater than 1. Prove algebraically that n^2 – 2 – (n – 2)^2 is always an even number.

1) Expand the brackets: (n-2)2 = (n-2)(n-2) = n2 - 2n - 2n +4 = n2 - 4n + 42) Substitute this into the original expression: n2- 2 - (n2 - 4n +4) = n2 - 2 - n2 + 4n - 4 = 4n - 6 3) Reduce this: 4n - 6 = 2(2n - 3)4) Conclusion: This is always an even number as for all values of n the expression is a multiple of 2

Answered by James M. Maths tutor

4640 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

(ii) In 90 days, the gas used by a family cost $198.16 . Calculate the number of units of gas used.


There are "n" sweets in a bag, six are orange and the rest are yellow. If you take a random sweet from the bag and eat it. Then take at random another one and eat it. The probability of eating two orange sweets is 1/3. Show that n²-n-90=0.


A right angled triangle has two smaller sides length 3 and 4, what is the length of its longest side?


Expand and simplify (x − 4)(2x + 3y)^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences