n is an integer greater than 1. Prove algebraically that n^2 – 2 – (n – 2)^2 is always an even number.

1) Expand the brackets: (n-2)2 = (n-2)(n-2) = n2 - 2n - 2n +4 = n2 - 4n + 42) Substitute this into the original expression: n2- 2 - (n2 - 4n +4) = n2 - 2 - n2 + 4n - 4 = 4n - 6 3) Reduce this: 4n - 6 = 2(2n - 3)4) Conclusion: This is always an even number as for all values of n the expression is a multiple of 2

JM
Answered by James M. Maths tutor

5134 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How would you factorise x^2 + 4x + 4


Find the roots for the quadratic equation x^(2)+6x+5=0


There are n sweets in a bag. 6 are Orange, the rest are Yellow. Hannah takes a sweet out of the bag, and eats it, she does this twice. The Probability of Hannah eating two orange sweets is 1/3. Show that n^2 - n - 90 =0, and solve to find the value of n.


Work out 2 and 3/4 x 1 and 5/7 Give your answer as a mixed number in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning