n is an integer greater than 1. Prove algebraically that n^2 – 2 – (n – 2)^2 is always an even number.

1) Expand the brackets: (n-2)2 = (n-2)(n-2) = n2 - 2n - 2n +4 = n2 - 4n + 42) Substitute this into the original expression: n2- 2 - (n2 - 4n +4) = n2 - 2 - n2 + 4n - 4 = 4n - 6 3) Reduce this: 4n - 6 = 2(2n - 3)4) Conclusion: This is always an even number as for all values of n the expression is a multiple of 2

Answered by James M. Maths tutor

4230 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Rationalise the denominator of 1/(4 + sqrt(3))


Solve the following equation: 4x + 7 = 2x - 5


A car costs £1200 in a sale. It was reduced by 20%. What was the original price?


A-level - How to differentiate e^x where x is more complicated?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences