Answers>Maths>IB>Article

Find the differential of y=arcsinx

To differentiate we must use implicit differentiation. So: siny=x .Differentiating both sides we get (dy/dx)cosy=1, so (dy/dx)=1/cosy . Using the common identity (sin2(y)+cos2(y)=1) we can rewrite the denominator so we have: (dy/dx)=1/((1-sin2y)(1/2)) we can then substitute sin y with the identity we have in the first line of working: (dy/dx)=1/(1-x2)(1/2)

Answered by Shivum G. Maths tutor

920 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The velocity, v, of a moving body at time t is given by v = 50 - 10t. A) Find its acceleration. B) The initial displacement, s, is 40 meters. Find an expression for s in terms of t.


Consider the infinite geometric sequence 25 , 5 , 1 , 0.2 , ... (a) Find the common ratio. (b) Find (i) the 10th term; (ii) an expression for the nth term. (c) Find the sum of the infinite sequence.


What is a derivative - Introduction to Calculus


Write down the expansion of (cosx + isinx)^3. Hence, by using De Moivre's theorem, find cos3x in terms of powers of cosx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences