Evaluate the integral \int \frac{x}{x tan(x) + 1} dx using integration by substitution, hence evaluate \int \frac{x}{x cot(x) - 1} dx.

(STEP I 2017, Q1i)For the first part, the hint u = x sin(x) + cos(x) is given. It can be seen that this is the denominator once the fraction is multiplied by cos(x) / cos(x). The answer is ln(x sin(x) + cos(x)) + c.For the second part, there is no hint given, but we can see it must be similar to the previous part. Multiplying the fraction by sin(x) / sin(x) makes the solution clear, to use another substitution, this time u = x cos(x) - sin(x). This will again give a similar answer of - ln(x cos(x) - sin(x)) + c.

SV
Answered by Shreyas V. STEP tutor

988 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Let y=arcsin(x)/sqrt(1-x^2). Show that (1-x^2) y'-xy-1=0, and prove that, for all integers n>=0, (1-x^2)y^{n+2}-(2n+3)xy^{n+1} -(n+1)^2 y^{n}=0. (Superscripts denote repeated differentiation)


STEP 2 - 2018, Q6i): Find all pairs of positive integers (n, p), where p is a prime number, that satisfy n! + 5 = p .


Show that substituting y = xv, where v is a function of x, in the differential equation "xy(dy/dx) + y^2 − 2x^2 = 0" (with x is not equal to 0) leads to the differential equation "xv(dv/dx) + 2v^2 − 2 = 0"


(x_(n+1), y_(n+1))=(x_n^2-y_n^2+a, 2x_ny_n +b+2). (i) Find (x1, y1) if (a, b)=(1,-1) and (x_n, y_n) is constant. (ii) Find (a, b) if (x1, y1)=(-1,1) and (x_n, y_n) has period 2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning