The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.

The rate at which the area is increasing, dA/dt, can be written with terms we know or can find out easily: dA/dt=dA/dr x dr/dt.Area of a disc, A = (pi)r^2dA/dr=2(pi)rRate of change of radius, dr/dt=0.003cm/sTherefore, dA/dt=2(pi)r x 0.003= 2(pi) x 20 x 0.003=0.12(pi)= 0.377cm^2/s

Answered by Henry H. Maths tutor

11006 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning points of the equation y=4x^3-9x^2+6x?


How and when do you use integration by parts?


Why does the equation x^2+y^2=r^2 form a circle in the Cartesian plane?


The curve C has equation ye^(-2x) = 2x + y^2. Find dy/dx in terms of x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences