The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.

The rate at which the area is increasing, dA/dt, can be written with terms we know or can find out easily: dA/dt=dA/dr x dr/dt.Area of a disc, A = (pi)r^2dA/dr=2(pi)rRate of change of radius, dr/dt=0.003cm/sTherefore, dA/dt=2(pi)r x 0.003= 2(pi) x 20 x 0.003=0.12(pi)= 0.377cm^2/s

Answered by Henry H. Maths tutor

10618 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can the y=sin(x) graph be manipulated?


The straight line with equation y=3x-7 does not cross or touch the curve with equation y=2px^2-6px+4p, where p is a constant.(a) Show that 4p^2-20p+9<0 (b) Hence find the set of possible values for p.


Integrate 2x^5 + 7x^3 - (3/x^2)


How do I sketch a polynomial function?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences