The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.

The rate at which the area is increasing, dA/dt, can be written with terms we know or can find out easily: dA/dt=dA/dr x dr/dt.Area of a disc, A = (pi)r^2dA/dr=2(pi)rRate of change of radius, dr/dt=0.003cm/sTherefore, dA/dt=2(pi)r x 0.003= 2(pi) x 20 x 0.003=0.12(pi)= 0.377cm^2/s

HH
Answered by Henry H. Maths tutor

11969 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the volume of revolution generated by the function, f(x) = (3^x)√x, for the domain x = [0, 1]


A curve has the equation y=x^3+2x+15. Find dy/dx.


Find the turning points of the curve y = x^3 +5x^2 -6x +4


The graph above shows the line y = 3*x^2. Find the area beneath the graph from y = 0 to y = 5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning