Factorise and solve x^2 - 8x + 15 = 0

Step 1: Factorise. In the final factorised form, your answer would be written in the form (x+a)(x+b). When expanded, this becomes: x^2 + (a+b)x + ab. Therefore, to factorise x^2 - 8x + 15, you need a + b = -8 and ab = 15. You know that a and b are both negative, as their addition is negative, but multiplication is positive. Finally, factors of 15 are: 1, 3, 5, 15. The only combination of numbers that work in this situation are 3 and 5. Therefore you know that a = -5 and b = -3. Factorised form is given as: (x-5)(x-3) = 0. Step 2: Solve. For two numbers to be multiplied together to make 0, one number must be 0 itself. Hence, either (x-5) = 0 or (x-3) = 0. We need to work on both scenarios, but I'll start with x-5 = 0. If x - 5 = 0, then x = 5 (you simply add 5 to the both sides). If x - 3 = 0, then x = 3 (same logic). Therefore, you obtain your two solutions, x = 5 and x = 3. At the end of your answer, state your two results clearly so your examiner can give you all the marks.

HS
Answered by Hanan S. Maths tutor

3317 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise f(x) = x^2+4x+4 and sketch the curve, identifying the roots and minimum point of f(x).


3x² = 75 Find the value of x.


f(x) = (x + 1)^2 and g(x) = 2(x - 1) Show that gf(x) = 2x(x + 2)


If we take a number and square it, the answer is also the product of the two numbers either side of it plus one. Prove algebraically that this works for all numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning