How do i find dy/dx in terms of t for two parametric equations that are in terms of t.

To differentiate parametric equations we have to use the chain rule in a special way.
We know that the chain rule can be written as dy/dx = dy/dt * dt/dx, as both dts cancel. But if we have an equation x in terms of t, and an equation y in terms of t, the above equation will no longer work, as we want dy/dt, but also dx/dt (rather than dt/dx).
To manage this the trick we use is simply to rewrite the equation as dy/dx = dy/dt / dx/dt. Using this we can now differentiate both equation y and equation x like normal, then put them as a fraction with dy/dt on top and dx/dt on the bottom and reduce this fraction to its simplest form.

BW
Answered by Ben W. Maths tutor

5092 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

State the interval for which sin x is a decreasing function for 0⁰ ≤ x ≤ 360⁰.


Show the sum from n=0 to 200 of x^n given that x is not 1, is (1-x^201)/(1-x) hence find the sum of 1+2(1/2)+3(1/2)^2+...+200(1/2)^199


integrate 5x + 3(square root of x)


Explain briefly the Normal Distribution


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning