How do i find dy/dx in terms of t for two parametric equations that are in terms of t.

To differentiate parametric equations we have to use the chain rule in a special way.
We know that the chain rule can be written as dy/dx = dy/dt * dt/dx, as both dts cancel. But if we have an equation x in terms of t, and an equation y in terms of t, the above equation will no longer work, as we want dy/dt, but also dx/dt (rather than dt/dx).
To manage this the trick we use is simply to rewrite the equation as dy/dx = dy/dt / dx/dt. Using this we can now differentiate both equation y and equation x like normal, then put them as a fraction with dy/dt on top and dx/dt on the bottom and reduce this fraction to its simplest form.

Answered by Ben W. Maths tutor

4154 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use integration by parts to find the integral of sin(x)*exp(x)


How would you go about integrating a function which has an exponential and a cos/sin term?


How do we differentiate y = arctan(x)?


If a ball is dropped from 6m above the ground, how long does it take to hit the floor and what is its speed at impact (assuming air resistance is negligible)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences