solve the simultaneous equations: 2x-3y = 16 and x + 2y = - 6

First we need to subtract a variable from another to eliminate a variable from both equations. To do this we need to make either the X value the same or the Y value the same.We can do this by multiplying the second equation by two giving us 2X + 4Y = -12Now we have a 2x in the first equation and the second.2x - 3y = 162x + 4y = -12 Now subtract the second equation from the first. (take care with the negative values-7y = 28Next divide both sides by -7y= 28/-7 = -4So now we have our y value (-4)Next, substitute the y value into one of the equations.x + 2y = -6x + 2(-4) = -6 Expand out the bracketx - 8 = -6 Add 8 to both sidesx = 2SOLUTION: X = 2 Y = -4

DR
Answered by Dana R. Maths tutor

4200 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What's the best way to work out any percentage of a given number, e.g. 63% of 450?


Which of the following lines is not perpendicular to y=2x+1? (A) y+1/2x=6 (B) 2y=4-x (C) 2x+y=4 (D) y=-1/2(7+x)


You are asked to choose from the meal deal at school, there are 9 varieties of sandwich, 6 varieties of snack and 8 varieties of drink. The meal deal consists of a sandwich, snack and drink - how many different combinations of meal deal are there?


A rectangle has length 3x+6 and width 2x-5. The perimeter of the rectangle is 22cm. What is the value of x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning