Why do group 3 metals form more acidic aqueous solutions than group 2 metals?

The equation of a metal ion forming a metal hexaaqua ion in aqueous solution is as follows.

Mn+ + 6H2O > [M(H2O)6)]n+

These are acidic because the metal is positively charged, and so attracts electron density away from the oxygen and from the O-H bonds. The O-H bonds therefore become weaker, and are easier to break. When the O-H bond breaks, a proton is given off which means that the metal hexaaqua ion is more acidic than regular water.

Because group 3 metals form 3+ cations, and group 2 metals form 2+ cations, group 3 metals form more positive ions than group 2 metals. This means that group 3 metals attract more electron density from the O-H bonds than group 2 metals, and so the O-H bonds become even weaker. The protons are therefore released easier causing the pH to decrease further.

Answered by Oliver W. Chemistry tutor

7769 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

How do you form phenylamine from benzene? Include reagents and conditions and the name of the reactions


Potassium Chlorate(VII) decomposes to produce Potassium Chloride and Oxygen. Using the following data calculate the enthalpy change of this decomposition: Enthalpy of formation(KClO4) = -430 kJ mol-1, Enthalpy of formation(KCl) = -440 kJ mol-1


What is meant by the term chiral?


Why does the first ionisation energy increase across period 3?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences