Why do group 3 metals form more acidic aqueous solutions than group 2 metals?

The equation of a metal ion forming a metal hexaaqua ion in aqueous solution is as follows.

Mn+ + 6H2O > [M(H2O)6)]n+

These are acidic because the metal is positively charged, and so attracts electron density away from the oxygen and from the O-H bonds. The O-H bonds therefore become weaker, and are easier to break. When the O-H bond breaks, a proton is given off which means that the metal hexaaqua ion is more acidic than regular water.

Because group 3 metals form 3+ cations, and group 2 metals form 2+ cations, group 3 metals form more positive ions than group 2 metals. This means that group 3 metals attract more electron density from the O-H bonds than group 2 metals, and so the O-H bonds become even weaker. The protons are therefore released easier causing the pH to decrease further.

OW
Answered by Oliver W. Chemistry tutor

9611 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Explain the principle behind chemically reactive and inert molecules


In terms of bonding, state the order of boiling point of propane, ethanol and ethanal and why.


How do you describe the process of recrystallisation to purify a product?


Explain how the electron pair repulsion theory can be used to deduce the shape of, and the bond angle in, NH3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning