Prove that the square of an odd number is always 1 more than a multiple of 4

In order to prove this we can write a general expression of an odd number in terms of n, e.g - 2n+1Square this 'odd number': (2n+1)^2, therefore you can write it as (2n+1)(2n+1), then expand (multiply out) the brackets to get: 4n^2 + 4n + 1We can then factorise this to get: 4(n^2 + 1) + 1 which is 'one more than a multiple of 4' as 4(n^2 + 1) will always be a multiple of 4 regardless of what n is.

Answered by Ben H. Maths tutor

2545 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A "day return" train ticket is £6.45. A "monthly saver" is £98.50. Sue worked for 18 days last month. She bought a day return ticket each day she worked. A monthly saver ticket is cheaper than 18 day return tickets. How much cheaper?


The cost of a ticket increases by 10% to £19.25. What is the original cost?


Work out the number of people in the office.


Solve the following system of equations simultaneously to find the values of x, y and z. 2x+3y+4z=3, -x-y+z=1, 2x+y-z=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences