Given f(x) = 7(e^2x) * (sin(3x)), find f'(x)

f(x) = 7e2x sin(3x) Chain rule: f(x) = uv → f'(x) = u'v + uv' u = 7e2x u' = 14e2x v = sin(3x) v' = 3cos(3x) f'(x) = 14e2xsin(3x) + 7e2x 3cos(3x) f'(x) = 7e2x ( 2 sin (3x) + 3 cos (3x) )

CK
Answered by Chris K. Maths tutor

4123 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following: sinx - cosx = 0 for 0≤x≤360


Two fair six sided dice, called A and B, are rolled and the results are added together. The sum of the dice is 8, what is the probability that two fours were rolled?


(Follow on from previous question) A curve has equation y= x^2+3x+2. Use your previous results to i) find the vertex of the curve ii) find the equation of the line of symmetry of the curve


Find the x and y coordinates of the turning points of the curve 'y = x^3 - 3x^2 +4'. Identify each turning point as either a maximum or a minimum.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning