Given f(x) = 7(e^2x) * (sin(3x)), find f'(x)

f(x) = 7e2x sin(3x) Chain rule: f(x) = uv → f'(x) = u'v + uv' u = 7e2x u' = 14e2x v = sin(3x) v' = 3cos(3x) f'(x) = 14e2xsin(3x) + 7e2x 3cos(3x) f'(x) = 7e2x ( 2 sin (3x) + 3 cos (3x) )

CK
Answered by Chris K. Maths tutor

4001 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the sum of the first n terms of a geometric sequence and where does it come from?


Prove algebraically that the sum of the squares of two consecutive multiples of 5 is not a multiple of 10.


Form the differential equation representing the family of curves x = my , where, m is arbitrary constant.


Factorize completely x^3 - 6x^2 + 11x - 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning