Given f(x) = 7(e^2x) * (sin(3x)), find f'(x)

f(x) = 7e2x sin(3x) Chain rule: f(x) = uv → f'(x) = u'v + uv' u = 7e2x u' = 14e2x v = sin(3x) v' = 3cos(3x) f'(x) = 14e2xsin(3x) + 7e2x 3cos(3x) f'(x) = 7e2x ( 2 sin (3x) + 3 cos (3x) )

Answered by Chris K. Maths tutor

3484 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral of sin^2(x) with respect to x


Use integration by parts to find the integral of x sin(3x)


Differentiate the function y = 26 + x - 4x³ -½x^(-4)


Differentiate sin(5x) and 3cos(x) and 3tan(5x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences