Find the equation of the straight line that is tangent to the curve 2x^2 - 5x - 3 =0 when x = 3.

First differentiate 2x2 - 5x - 3 to get 4x -5. At x = 3, the gradient of the tangent must be 7, and we know it goes through (3, 0) Plug the values into y = mx + c to get the equation of the line, which is y = 7x -21

SL
Answered by Sarah L. Maths tutor

2850 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Rana sells 192 cakes in the ratio small : medium : large = 7 : 6 : 11. medium cakes are worth double small ones and large cakes triple small ones. If the cakes go for £532.48 how much is a small cake worth


Solve for x: y=x^2-x-12


ABC is a right angled triangle. D is the point on AB such that AD = 3DB. AC = 2DB and angle A = 90 degrees. Show that sinC = k/√20 where k is an integer. Find the value of k


Solve the simultaneous equation: 2x - 5y = 9 , x + 6y = -4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning