Differentiate y=x^2cos(x)

This is done using the product rule: dy/dx=udv/dx +vdu/dxset y=uv therefore u=x^2 v=cos(x)differentiate these with respect to x du/dx= 2x as you multiply by the power and then subtract the power by 1dv/dx= -sin(x) these are one the derivatives that have to be learnt for the examplug these values into the product rule to get the following:dy/dx= (x^2)(-sin(x)) + (cos(x))(2x)rewritten to dy/dx= 2xcos(x) - x^2sin(x)can be further simplified by factorising and taking out the x to get the final answer: dy/dx = x(2cos(x) - xsin(x))

KK
Answered by Kavita K. Maths tutor

3045 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The function f is defined for all real values of x as f(x) = c + 8x - x^2, where c is a constant. Given that the range of f is f(x) <= 19, find the value of c. Given instead that ff(2) = 8, find the possible values of c.


Find a solution to sec^(2)(x)+2tan(x) = 0


Ball P is shot at 18m/s horizontally from the top of a 32m mast. Ball Q is shot at 30m/s at an angle 'a' to the horizontal from the bottom of the mast. They collide mid-air. Prove that cos'a' = 3/5


Find dy/dx when y = 4x^1/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning