Differentiate y=x^2cos(x)

This is done using the product rule: dy/dx=udv/dx +vdu/dxset y=uv therefore u=x^2 v=cos(x)differentiate these with respect to x du/dx= 2x as you multiply by the power and then subtract the power by 1dv/dx= -sin(x) these are one the derivatives that have to be learnt for the examplug these values into the product rule to get the following:dy/dx= (x^2)(-sin(x)) + (cos(x))(2x)rewritten to dy/dx= 2xcos(x) - x^2sin(x)can be further simplified by factorising and taking out the x to get the final answer: dy/dx = x(2cos(x) - xsin(x))

KK
Answered by Kavita K. Maths tutor

2977 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the normal line to the curve y = 3x^3 - 6x^2 at the point (1, 4)?


With log base 4, solve log(2x+3) + log(2x+15) = 1 + log(14x+5)


A particle of mass 5kg is held at rests on a slope inclined at 30 degrees to the horizontal. The coefficient of friction for the slope is 0.7, determine whether the particle will move when released.


Find the solution of the differential equation: dy/dx = (xy^2 + x)/y. There is no need to rearrange the solution to be in terms of y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning