Find the coordinates of the stationary points y=x^4-8x^2+3

Begin with the equation: y = x4-8x2+3. Differentiate by bringing the power down and reducing the power by 1 of each of the terms with x in and constant terms (3) become zero. dy/dx = 4x3-16x. Stationary point is at dy/dx = 0. 4x3-16x = 0. Solve like a normal cubic equation, x = 0, x = -2, x = 2. Sub into original equation to get y coordinate. So coordinates of stationary points are (0,3) (-2,13) and (2,13).

FH
Answered by Finlay H. Maths tutor

6368 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you show some quadratic polynomials are always greater than 0?


Find dy/dx such that y=(e^x)(3x+1)^2.


In the triangle ABC, AB = 16 cm, AC = 13 cm, angle ABC = 50 and angle BCA= x Find the two possible values for x, giving your answers to one decimal place.


If I am given a line, how do I find a line that is parallel to it? What about perpendicular?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning