Find the coordinates of the stationary points y=x^4-8x^2+3

Begin with the equation: y = x4-8x2+3. Differentiate by bringing the power down and reducing the power by 1 of each of the terms with x in and constant terms (3) become zero. dy/dx = 4x3-16x. Stationary point is at dy/dx = 0. 4x3-16x = 0. Solve like a normal cubic equation, x = 0, x = -2, x = 2. Sub into original equation to get y coordinate. So coordinates of stationary points are (0,3) (-2,13) and (2,13).

Answered by Finlay H. Maths tutor

5520 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x+2)/((x+5)(x-7)) using partial fractions between the limits 5 and -2, giving your answer to 3sf


Show that cosh(x+y) = cosh(x)cosh(y) + sinh(x)sinh(y)


find the value of dy/dx at the point (1,1) of the equation e^(2x)ln(y)=x+y-2


What is the derivative of ln(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences