Find the area between the curves C_1, C_2 and the lines x=0 and x=1, where C_1 is the curve y = x^2 and C_2 is the curve y = x^3.

We start by drawing a diagram which illustrates the question. First draw the x-y plane and the two curves curve y = x^2 and y = x^3. Notice that the two curves intersect at x=0 and x=1, and in the range 0<x<1, the curve y = x^2 is above the curve y = x^3. Shade in the area which we are asked to find.
In order to find the area under y=x^2, call it A_1, we integrate the function y^2 between the limits of x = 0 and x = 1. [Explain the integration procedure if student is unsure of how it works.] This gives the answer A_1 = 1/3. Now, we integrate the function y = x^3 between limits x=0 and x = 1 to find the area A_2 under the second curve. The result is A_2 = 1/4.
Looking back to our diagram, it is clear that the area we are after is the difference between the two areas we have calculated, i.e. A_1 - A_2 = 1/12.

MK
Answered by Monika K. Maths tutor

2398 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the integral ∫(ln(x))^2dx ?


What is 7 to the power of 8? (


A curve has equation y = 2x^5 + 5x^4 1 . (a) Find: (i) dy/ dx [2 marks] (ii) d^2y/ dx^2 (b) The point on the curve where x ¼ 1 is P. (i) Determine whether y is increasing or decreasing at P, giving a reason for your answer.


using integration by parts evaluate the integral of xsinx between x=0 and x =pi/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences