Prove algebraically that (2n + 1) to the power of 2 - (2n-1) is an even number

(2n + 1) 2 - (2n-1)can also be written be as (2n +1)(2n + 1) - (2n-1) Two brackets next to each other indicate that you must multiple them by each other, this is also known as expanding the brackets. To do this you must multiply everything by each other, an easy was to do this is using the following words first, inside, outside, lastthe first two terms in the brackets are multiplied 2n x 2n = 4n2the inside two terms in the brackets are multiplied 2n x 1= 2n the outside two terms in the brackets are multiplied 2n x 1 = 2n the last two terms in the brackets are multiplied 1x1= 1 together the expanded expression is (4n2 + 2n +2n +1) - (2n-1)simplifying means putting the like terms together (4n2 + 4n + 1) - (2n-1)simplifying further 4n2 + 2n this is now the simplest expression, we still need to prove than any answer to this expression is an even number. we know that any number multiplied by 2 is an even number furthermore if we can take a factor of 2 out then anything that is multiplied by it will be even.2(2n2+n) furthermore the expression will produce an even number

Answered by Otiti O. Maths tutor

4014 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The probability of pulling out a coloured counter from a bag is shown below: Green=0.2. Purple=0.15. Black=0.3. Pink=?. What is the probability of pulling out a pink counter?


Expand and simplify 3(x-2) -2(x+2)


Factorise 4xy-6xz


What is differentiation and what does it actually mean?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences