Solve the simultaneous equations: x^2 + y^2 = 5 and y = 3x + 1

x2 + y2 = 5 1y = 3x + 1 2Inserting 2 into 1: x2 + (3x +1)2 = 5 Expanding the brackets: x2 + 9x2 + 3x + 3x + 1 = 5Collecting like terms: 10x2 + 6x - 4 = 0Using the quadratic formula: x = (-6 ± √(62 - 4 * 10 * -4))/(2 * 10)Simplifying: x = ( -6 ± √(36 + 160))/20Simplifying further: x = (-6 ± √196)/20Solving for x: x = (-6 ± 14)/20 x1 = (-6 + 14)/20 or x2 = (-6 - 14)/20 x1 = 8/20 or x2 = -20/20 x1 = 0.4 or x2 = -1Substituting x1 and x2 into 2: y1 = 3x1 + 1 or y2 = 3x2 + 1 y1 = 3(0.4) + 1 or y2 = 3(-1) + 1 y1 = 1.2 + 1 or y2 = -3 + 1 y1 = 2.2 or y2 = -2Rewrite answers: x1 = 0.4 and y1= 2.2 x2 = -1 and y2 = -2

Answered by Sophie B. Maths tutor

4695 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the point of intersection between the lines 2y=-4x+4 and 3y=10x-3


A square has sides of length x cm. The length of a rectangle is equal to the perimeter of this square. The perimeter of this rectangle is 14x cm. Find an expression for the width of this rectangle. Give your answer in terms of x.


Solve the simultaneous equations 5x + 3y = 24 and 3x - 4y = 26


Solve the equation (4x-3)/2 + (7x+1)/6 = 29/2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences