A particle is moving along a straight line. The displacement of the particle from O at time t seconds is s metres where s = 2t^3 – 12t^2 + 7t. Find an expression for the velocity of the particle at time t seconds.

To find the velocity function of a particle when given its displacement function, you must differentiate the given function. v = 6t^2 - 24t + 7 .Similarly, to get the displacement function from the velocity function, you integrate the velocity function (and use given conditions to find the integration constant). In addition, to find the acceleration function, you differetiate the velocity function.d -> v -> a [differentiation].a -> v -> d [integration].

AL
Answered by Andrew L. Maths tutor

6186 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I know when to use sine, cos or tan when working with right angled triangles?


Why do the denominators have to be equal when adding fractions, but not when multiplying them?


Solve the following simultaneous equations: x^2 + 2y = 9, and y = x + 3.


Factorise fully the following: 12x^3 + 3x^2 + 15x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning