A particle is moving along a straight line. The displacement of the particle from O at time t seconds is s metres where s = 2t^3 – 12t^2 + 7t. Find an expression for the velocity of the particle at time t seconds.

To find the velocity function of a particle when given its displacement function, you must differentiate the given function. v = 6t^2 - 24t + 7 .Similarly, to get the displacement function from the velocity function, you integrate the velocity function (and use given conditions to find the integration constant). In addition, to find the acceleration function, you differetiate the velocity function.d -> v -> a [differentiation].a -> v -> d [integration].

Answered by Andrew L. Maths tutor

5341 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A cylinder has a radius of 4 cm and volume of 800 cm3. A similar cylinder with the same height has a volume of 200 cm3. Find the radius of the smaller cylinder.


There are 14 boys in a class and 16 girls. The Mean height of the class is 1.6m, the mean of the girls is 1.5m what is the mean height of the boys?


Write x^2+6x-7 in the form (x+a)^2+b where a and b are integers


The two points (4,9) and (2,3) are on line A. A second line, line B is perpendicular to line A and goes through the point (2,3). What is the equation of line B?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences