How do you prove a mathematical statement via contradiction?

For a proof via contradiction, you would start by assuming the statement is actually false1 (even if the given statement seems inherently correct, it is essential for the proof). Now that you have a basis for your argument, you can make use of mathematical steps and logic2 to show that the assumption leads to an impossible situation/conclusion3 (either a contradiction of the assumption or a contradiction of a fact that is known to be true). You are now able to conclude that your assumption was incorrect, and thus the original statement is true4.For example, to prove 'If x2 is even, then x is also even' via contradiction: 1) Assume the statement is actually false. Suppose that x2 is an even integer, and that x is in fact an odd integer. 2) Use mathematical steps and logic. We can represent x, being odd, as x=2n+1 where n is any integer. Now x2=(2n+1)2=4n2+4n+1. By factorising this result we end up with x2= 2k+1, where k=2n2+2n. 3) A contradiction or an impossible situation. Having shown x2=2k+1, it is impossible for x2 to be an even integer. This contradicts our original statement. 4) Conclusion. Our assumption (If x2 is even, then x is odd) has been shown to be impossible, thus proving by contradiction that the original statement (If x2 is even, then x is also even) must be correct/true.

Answered by Jake S. Maths tutor

2643 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 2sin^3(x)+3.


A curve, C, has equation y =(2x-3)^5. A point, P, lies on C at (w,-32). Find the value of w and the equation of the tangent of C at point, P in the form y =mx+c.


Express: (x^2 + 5x - 14) / (2x^2 - 4x) as a fraction in it's simplest form.


Why can't you divide something by 0?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences