Rationalise and simplify (root(3) - 7)/(root(3) + 1) . Give your answer in the form a + b*root(3) where a, b are integers.

There are two ways of solving this problem, one which is the routine method that always works in these cases, and one which requires an interesting little trick.The standard method is to use the difference of two squares removing the root in the denominator, by multiplying top and bottom by root(3) - 1. Then with a bit of algebra and multiplying out brackets we arrive at our result.The nifty trick is to observe that the top part is the bottom - 8. This allows us to separate the fraction into two, neither of which has a root on the top. This makes things a lot simpler although it will still require the difference of two squares.

NK
Answered by Nikolai K. Further Mathematics tutor

5993 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Find and describe the stationary points of the curve y = x^2 + 2x - 8


Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


Can you explain induction and go through an example?


How can you divide an algebraic expression by another algebraic expression?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning