How do I differentiate tan(x) ?

To differentiate tan(x):

Note: Here, we use d/dx f(x) to mean "the derivative of f(x) with respect to x". 

1) rewrite tan(x) as sin(x)/cos(x)

2) Apply the quotient rule (or, alternatively, you could use the product rule using functions sin(x) and 1/cos(x)):

Using the quotient rule:

d/dx tan(x) = (cos(x)cos(x) - sin(x)(-sin(x))) / cos2(x)

d/dx tan(x) = (cos2(x) + sin2(x)) / cos2(x)

3) Recall/Note the following identity: cos2(x) + sin2(x) = 1

So, d/dx tan(x) = 1 / cos2(x)

4) Use the definition of sec(x):

So, d/dx tan(x) = sec2(x), as required 

 

Related Further Mathematics A Level answers

All answers ▸

If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...


I'm struggling with an FP2 First-Order Differential Equations Question (Edexcel June 2009 Q3) and the topic in general!


The function f is defined for x > 0 by f (x) = x^1n x. Obtain an expression for f ′ (x).


How do I express complex numbers in the form reiθ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences