How do I differentiate tan(x) ?

To differentiate tan(x):

Note: Here, we use d/dx f(x) to mean "the derivative of f(x) with respect to x". 

1) rewrite tan(x) as sin(x)/cos(x)

2) Apply the quotient rule (or, alternatively, you could use the product rule using functions sin(x) and 1/cos(x)):

Using the quotient rule:

d/dx tan(x) = (cos(x)cos(x) - sin(x)(-sin(x))) / cos2(x)

d/dx tan(x) = (cos2(x) + sin2(x)) / cos2(x)

3) Recall/Note the following identity: cos2(x) + sin2(x) = 1

So, d/dx tan(x) = 1 / cos2(x)

4) Use the definition of sec(x):

So, d/dx tan(x) = sec2(x), as required 

 

Related Further Mathematics A Level answers

All answers ▸

What IS a Taylor Series?


Calculate: ( 2+i√(5) )( √(5)-i).


If a car of mass 1000kg travels up a slope inclined at 5 degrees at a speed of 20 meters per second calculate the power output of the car's engine (assuming a resistive force due to friction of 500N)


Find the derivative of the arctangent of x function


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences