How do I differentiate tan(x) ?

To differentiate tan(x):

Note: Here, we use d/dx f(x) to mean "the derivative of f(x) with respect to x". 

1) rewrite tan(x) as sin(x)/cos(x)

2) Apply the quotient rule (or, alternatively, you could use the product rule using functions sin(x) and 1/cos(x)):

Using the quotient rule:

d/dx tan(x) = (cos(x)cos(x) - sin(x)(-sin(x))) / cos2(x)

d/dx tan(x) = (cos2(x) + sin2(x)) / cos2(x)

3) Recall/Note the following identity: cos2(x) + sin2(x) = 1

So, d/dx tan(x) = 1 / cos2(x)

4) Use the definition of sec(x):

So, d/dx tan(x) = sec2(x), as required 

 

Related Further Mathematics A Level answers

All answers ▸

Can you express 3 + 4j in polar form?


Differentiate w.r.t x the expression arccos(x).


Simplify i^{4}?


A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences