How do I differentiate tan(x) ?

To differentiate tan(x):

Note: Here, we use d/dx f(x) to mean "the derivative of f(x) with respect to x". 

1) rewrite tan(x) as sin(x)/cos(x)

2) Apply the quotient rule (or, alternatively, you could use the product rule using functions sin(x) and 1/cos(x)):

Using the quotient rule:

d/dx tan(x) = (cos(x)cos(x) - sin(x)(-sin(x))) / cos2(x)

d/dx tan(x) = (cos2(x) + sin2(x)) / cos2(x)

3) Recall/Note the following identity: cos2(x) + sin2(x) = 1

So, d/dx tan(x) = 1 / cos2(x)

4) Use the definition of sec(x):

So, d/dx tan(x) = sec2(x), as required 

 

Related Further Mathematics A Level answers

All answers ▸

How do I sketch accurate graphs for rational functions in a short amount of time? (I.e. A step by step guide of sketching graphs)


Find the area of the surface generated when the curve with equation y=cosh(x) is rotated through 2 pi radians about the x axis, with 2<=x<=6


Show that the sum from 1 to n of 1/(2n+1)(2n-1) is equal to n/(2n+1) by Induction


Find the complementary function to the second order differential equation d^2y/dx^2 - 5dy/dx + 6x = x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences