The acid dissociation constant, Ka, of ethanoic acid is 1.78 x 10^-5 at 298K. Given that the concentration of a sample of ethanoic acid is 0.4moldm^-3, calculate its pH at 298K.

Using the acid dissociation equation, Ka = [H+][A-]/[HA]. (where Substitute the known values into the concentration to give 1.78x10-5= [H+][A-]/0.4 . Because the acid is dissociating in solution the acid dissociates in water which is neutral, then [H+] and [A-] must be equal. So we can write: [H+]2/0.4=1.78x10-5. So [H+]2 =7.12x10-6 and [H+] = 2.67x10-3.Substitute [H+] into the pH equation: pH =-log[H+] = -log[2.67x10-3] = 2.57

Answered by Sita R. Chemistry tutor

8264 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

What is the First Law of Thermodynamics?


Describe the trend in reactivity as you go down group 2 metals?


In the flowing equitation 2H2+O2→2H2O how many grams of oxygen are needed to make 9g of water?


Why does reactivity increase as you go down Group 1 metals?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences