The acid dissociation constant, Ka, of ethanoic acid is 1.78 x 10^-5 at 298K. Given that the concentration of a sample of ethanoic acid is 0.4moldm^-3, calculate its pH at 298K.

Using the acid dissociation equation, Ka = [H+][A-]/[HA]. (where Substitute the known values into the concentration to give 1.78x10-5= [H+][A-]/0.4 . Because the acid is dissociating in solution the acid dissociates in water which is neutral, then [H+] and [A-] must be equal. So we can write: [H+]2/0.4=1.78x10-5. So [H+]2 =7.12x10-6 and [H+] = 2.67x10-3.Substitute [H+] into the pH equation: pH =-log[H+] = -log[2.67x10-3] = 2.57

Answered by Sita R. Chemistry tutor

10966 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

How do you test for the different halide ions?


2NaNO3 --> 2NaNO2 + O2. When a sample of solid sodium nitrate was heated 96cm3 of gas was collected, calculate the mass of NaNO3 Decomposed


Why don't atoms have an overall charge?


Calculate the relative formula mass of Iron(III) Oxide (Fe2O3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences