Find the coordinates of the turning point of the equation y =x^2-8x+10

We know that the turning point of this quadratic will be a minimum point because the coefficient of x2 is positive (1). To find the turning point, we must complete the square: y= (x-4)2 -16 +10 so y= (x-4)2-6. Since the value of the brackets is a square number, it must be greater than or equal to 0, so the smallest number y can be is equal to when the brackets is 0. y = (0)2-6. So at the minimum point, y =-6. Since the brackets must equal 0, x-4 = 0 so x=4. Hence the turning point is at (4,-6)

SR
Answered by Sita R. Maths tutor

6669 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The diagram shows a garden in the shape of a rectangle. All measurements are in metres. The length of the rectangle: 4+3x and the width of the rectangle: x+6. The perimeter of the garden is 32 metres. Work out the value of x


Simplify the expression: (x^2 + x - 6)/(3x^2 + 9x)


There are 11 pens in a box. 8 are black and 3 are red. Two pens are taken out at random without replacement. Work out the probability that the two pens are the same colour.


Solve algebraically the simultaneous equations: x^2 + 3x + 10 = y and; 4 - 2x = y. Give answers as co-ordinates.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning