Find the coordinates of the turning point of the equation y =x^2-8x+10

We know that the turning point of this quadratic will be a minimum point because the coefficient of x2 is positive (1). To find the turning point, we must complete the square: y= (x-4)2 -16 +10 so y= (x-4)2-6. Since the value of the brackets is a square number, it must be greater than or equal to 0, so the smallest number y can be is equal to when the brackets is 0. y = (0)2-6. So at the minimum point, y =-6. Since the brackets must equal 0, x-4 = 0 so x=4. Hence the turning point is at (4,-6)

Answered by Sita R. Maths tutor

5560 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Johnny take 4 hours 50 minutes to drive 213 miles to Manchester. He then takes the train to Liverpool. Liverpool is 37 miles from Manchester and the train travels at 90mph. Calculate Johnny's average speed for his total journey in mph.


The area of a parallelogram is given by the equation 2(x)^2+7x-3=0, where x is the length of the base. Find: (a) The equation of the parallelogram in the form a(x+m)^2+n=0. (b) The value of x.


Work out 70% of 140 (Non-calculator)


Solve the following simultaneous equations, 1) 3x + 3y = 9 and 2) 4x + 2y = 13.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences