We know that the turning point of this quadratic will be a minimum point because the coefficient of x2 is positive (1). To find the turning point, we must complete the square: y= (x-4)2 -16 +10 so y= (x-4)2-6. Since the value of the brackets is a square number, it must be greater than or equal to 0, so the smallest number y can be is equal to when the brackets is 0. y = (0)2-6. So at the minimum point, y =-6. Since the brackets must equal 0, x-4 = 0 so x=4. Hence the turning point is at (4,-6)