Show that (x+1)(x+2)(x+3) can be written as ax^3+bx^2+cx+d

Start by multiplying any 2 brackets together: (x + 1)(x + 2): Split the 1st bracket: x(x+2) + 1(x+2) = x^2 + 2x + x + 2 = x^2 + 3x + 2 Then multiply that answer with the last bracket: (x + 3)(x^2 + 3x + 2): Split the 1st bracket: x(x^2 +3x + 2) +3(x^2 +3x + 2)= x^3 + 3x^2 + 2x + 3x^2+ 9x + 6 = x^3 + 6x^2 + 11x + 6 . a = 1, b = 6, c = 11, d = 6.

RS
Answered by Rushab S. Maths tutor

3862 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify (3X+9)(X-6)=0


Find the inverse function of f(x)=5/(x-4)


A circle is touching a square. The area of the square is 64 cm^2. Work out the area of the circle.


There are 892 litres of oil in Mr Aston’s oil tank. He uses 18.7 litres of oil each day. Estimate the number of days it will take him to use all the oil in the tank.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning