Solve x^2+x-30=0

To solve this question we need to factorise x2 +x-30=0 to find the points in which the function x2 +x-30=0 intersects/ cuts the x axis. We factorise the function x2 +x-30=0 by assessing the function, if the function is a quadratic ie. the highest power of x is 2 we know that there will be 2 solutions in the form of (x+a)(x+b) where a or b could be positive or negative. If the function had a higher power of x say x3 there would be 3 solutions and x4 would have 4 solutions and so on.When finding a and b we look at the integer (number) that is not multiplied by any x and is just a integer in this case 30 and we look at the factors of 30 which are 1,2,3,5,6,10,15,30. Out of these factors we find a pair of factors which multiply together to make 30 and make the coefficient of x which is 1 in this case as is we expand (x+a)(x+b) = x2+ax+bx+ab hence we need a+b=1 and axb=-30. Out of the factors of 30 we can see that 6-5=1 and (-5)x6 = -30 so a and b must be 6 and -5. Hence, x2 +x-30=0 is factorised to (x-5)(x+6)=0.

Answered by Dylan P. Maths tutor

3217 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Kevser buys 5kg of sweets for £10. She separates the sweets so that there are 250g of sweets in each bag. She sells each bag for 65p. She sells all bags. What is her percentage profit?


Frank owns an ice cream van. When he bought the van five years ago and an ice cream cost £1.50. If the price of an ice cream increases by 3% a year how much does an ice cream cost now?


I'm struggling with quadratic equations


Plot the graph for y = 4x - 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences