What is the integral of sin^2(x)?

From the double angle formula for cosine, we know that cos(2x)=cos2(x)-sin2(x). Also, we know that sin2(x)+cos2(x)=1. So by substituting the second formula into the first, we can say that cos(2x)=(1-sin2(x))-sin2(x)=1-2sin2(x)

By rearranging, this gives sin2(x)=1/2-1/2cos(2x). Now, the right hand side of this equation can be more easily integrated with regards to x.

The integral of cos(ax) is (1/a)sin(ax). So, the indefinite integral of the RHS (and hence sin2(x)) is (1/2)x-1/4sin(2x)+C for some arbitrary constant, C.

Answered by Jonathan B. Maths tutor

5441 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Factorise the following: 5a^3b^5-4ab^2


Use Integration by parts to find ∫ xsin3x dx


For the curve y = 2x^2+4x+5, find the co-ordinates of the stationary point and determine whether it is a minimum or maximum point.


Find the gradient of the line Y = X^3 + X + 6 when X = 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences