Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.

Take u = 1+3x2 , this gives that y = u1/3 . By the chain rule we have that dy/dx = dy/du * du/dx. By differentiating y = u1/3 with respect to u gives dy/du = (1/3)u-2/3. By differentiating u = 1 + 3x2 with respect to x gives du/dx = 6x. Using the formula highlighted gives the answer dy/dx = 2x(1+3x2)-2/3 which we have obtained by substituting u back in.

Answered by Jasmine S. Maths tutor

4034 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If the function f is defined as f= 1-2x^3 find the inverse f^-1


Given the parametric equations x = t^2 and y = 2t -1 find dy/dx


Find the value of x in (4^5⋅x+32^2)⋅2^5=2^16⋅x


How do you integrate the natural logarithm ln(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences