The function f has domain (-∞, 0) and is defines as f(x) = (x^2 + 2)/(x^2 + 5) (here ^ is used to represent a power). Show that f'(x) < 0. What is the range of f?

First notice that f(x) = u/v. So f'(x) =[ v(u') - u(v')]/v2 (the Quotient rule). After working it out, we find f'(x) = 6x/(x2 + 5)2 (the steps can be shown on the whiteboard). Since the denominator is always positive and the numerator is always negative we conclude that f'(x) is always negative.The range of f is (2/5, 1). One way of explaining this is that when x gets very close to -∞, x2 gets close to +∞ and therefore f(x) gets close to 1. When x is close to 0 (but still in the domain), the x-squared terms are very small so f(x) gets close to 2/5.

Answered by Chris C. Maths tutor

2402 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y = 2sin(θ) and x = 3cos(θ) find dy/dx.


Find stationary points of curve y = x^3+3x-2


Let N be an integer not divisible by 3. Prove N^2 = 3a + 1, where a is an integer


Two fair six sided dice, called A and B, are rolled and the results are added together. The sum of the dice is 8, what is the probability that two fours were rolled?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences