In still air an aircraft flies at 200 m/s . The aircraft is heading due north in still air when it flies into a steady wind of 50 m/s blowing from the west. Calculate the magnitude and direction of the resultant velocity?

Vector diagram showing an aircraft flying at 200 m/s north with a wind blowing at 50 m/s from west. Therefore the problem involves pythagoras theorem.

So, the Magnitude of the resultant velocity is given by: Vr = squareroot of the addition of (200+ 502) = 210m/s.

The direction of the resultant velocity is given by: Theta = tan-1(opp/adj = 50/200) = 14 degrees.

Answered by Milan P. Physics tutor

13464 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A passenger is standing in a train. The train accelerates and the passenger falls backwards. Use Newton's first law of motion to explain why he fell backwards.


A cricketer throws a ball vertically upwards so that the ball leaves his hands at a speed of 25 m/s. Calculate the maximum height reached by the ball, the time taken to reach max. height, and the speed of the ball when it is at 50% max. height.


What is the maximum length a bungee rope with a spring constant of 100 Nm−1 can be for an 80kg man to be able to jump from 100m above a river without touching the water?


Two balls with the same kinetic energy have mass of ball a = m and ball b = 2m. What is the ratio of their momentums: a/b?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences