Use integration by parts to integrate the following function: x.sin(7x) dx

Integration by parts follows the general form: ∫u (dv/dx) = u.v - ∫v (du/dx)Let x = uLet sin 7x = (dv/dx)∫x.sin(7x) dx = x.(-1/7)cos(7x) - ∫(-1/7)cos(7x).1 dx = (-x/7)cos(7x) + (1/49)sin(7x) + c

AN
Answered by Ahanna N. Maths tutor

4246 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations: x = 3t +8, y = t^3 - 5t^2 + 7t. Find the co-ordinates of the stationary points.


Find the value of: d/dx(x^2*sin(x))


I can differentiate exponentials (e^x), but how can I differentiate ln(x)?


Some videos I've made


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences