Integrate e^x sinx

Since we have two functions of x being multipied togrther, we have to integrate this by parts. Therefore if we say, u=sinx and v'=ex, then u'=cosx and v=ex.Applying the integration by parts rule of: uv' dx = vu - ∫vu' dxso: ∫exsinx dx = exsinx - ∫ excosx dxAs before, since we have two functions of x being multipied togrther, we have to integrate this by parts. Therefore if we say, u=cosx and v'=ex, then u'=-sinx and v=ex.∫exsinx dx = exsinx - (excosx - ∫ -exsinx dx)∫exsinx dx = exsinx - excosx - ∫ exsinx dx2∫exsinx dx = exsinx - excosx ∫exsinx dx = 1/2ex(sinx-cosx)+c

Answered by Kishan P. Maths tutor

4093 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider a differential equation where dx/dt = -axt. Find an equation for x(t).


How do you differentiate using the chain rule?


Find the coordinates of the centre of the circle with equation: x^2 + y^2 − 2*x + 14*y = 0


Prove the identity: (sinx - tanx)(cosx - cotx) = (sinx - 1)(cosx - 1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences