Complete the square on this equation: 2x^2 + 20x + 15 = 0.

First you need to remove the coefficient on the x^2. We do this by factorising the 2x^2 + 20x and placing the 2 from the x^2 outside a set of brackets. This looks like:2(x2+10x) +15 = 0Then we get half of the x coefficient and place it in a secondary set of squared brackets in the form (ax2 +b)2. This looks like:(x + 5)2Next we subtract from this set of brackets the square of the half of the x coefficient. Make sure to keep this within the first set of brackets. This looks like:2((x+5)2-25)+15 = 0This means when the squared brackets are multiplied out, x2 + 10x is the only thing that will be left. Finally we expand the brackets to neaten the equation.2(x+5)2 +2*-25+15 = 02(x+5)2-35=0The equation is now in complete the square form.

Answered by Robyn L. Maths tutor

2972 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Give an example of a real-world system that would be described by a quadratic equation. Explain the significance of the two real roots, a repeated root, and undefined roots. Is there any significance to a positive or a negative answer in your example?


Solve: x^2-x-6 using factorisation.


Write down the value of 36^0.5


A bag contains only apple and oranges. The probability an apple is picked randomly is 1 in 5. The apple is returned, and five more apples are added to the bag. The probability of an apple being picked is now 1in 3. How many apples were there originally?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences