Solve the simultaneous equations 5x + y = 21 and x - 3y = 9

To begin with, I would begin by explaining that in a situation with simultaneous equations one of the variables must be eliminated to find the values for y and x.In this specific case I would make the x variables have the same coefficient and multiply the second equation by 5 giving 5x-13y=45The next step would be to subtract one equation from the other as so: 5x-13y=45 - 5x + y = 21 resulting in an answer of -16y=24This equation can rearrange to y= -1.5Using this value in either of the original equations you can solve for xBy using x-3y=9 and rearranging for x to give x=9+3y then substituting in the value for y to obtain x=4.5

Answered by Lily O. Maths tutor

2272 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

John and simon share £80 in the ratio 5:3 in that order, how much do they each receive?


Simplify the following expression: ( (x^5) / (x^2) ) ^ 4


A cuboid with a volume of 912cm^3 has the dimensions 4 cm, (x + 2) cm and (x + 9) cm. Find an equation in terms of x and solve to find the dimension.


Work out the nth term of the sequence 3, 7, 11, 15, ...


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences