Solve (72x^3 - 18x)/(12x^2 - 6x) = 0 for x.

So first you need to recognise that you are able to take 2x out of both the numerator and denominator of the fraction:(72x3 - 18x)/(12x2 - 6x) = 0 ---> (2x (36x2 - 9))/ (2x (6x - 3)) = 0 , the 2x's cancel and we are left with (36x2 - 9)/ (6x - 3)= 0 , from here it is necessary to identify that the numerator can be factorised by the difference of two squares: (6x - 3)(6x + 3)/ (6x - 3)= 0 , the (6x-3) brackets cancel and we are left with the simple equation, 6x+3 = 0, which is solved for x to be, x = -1/2.

Answered by William R. Maths tutor

2307 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Jamil has 5 litres of water in a container. He pours 750 millilitres of water into each of 6 bottles. (c) How much water is left in the container? Give your answer in millilitres.


How do I draw a graph, y = mx + c, if I am only given m and a point that the line passes through?


Show that 0.81 reocurring = 9/11


Solve x^2 = 4(x – 3)^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences