Solve (72x^3 - 18x)/(12x^2 - 6x) = 0 for x.

So first you need to recognise that you are able to take 2x out of both the numerator and denominator of the fraction:(72x3 - 18x)/(12x2 - 6x) = 0 ---> (2x (36x2 - 9))/ (2x (6x - 3)) = 0 , the 2x's cancel and we are left with (36x2 - 9)/ (6x - 3)= 0 , from here it is necessary to identify that the numerator can be factorised by the difference of two squares: (6x - 3)(6x + 3)/ (6x - 3)= 0 , the (6x-3) brackets cancel and we are left with the simple equation, 6x+3 = 0, which is solved for x to be, x = -1/2.

WR
Answered by William R. Maths tutor

2881 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What are the solutions to x^2+3x+2=0


y = (x/3) - 14. Rearrange this equation to make x the subject.


Please explain the difference between compound and simple interest


There are three boxes and one has a prize inside. You are told to choose a box. One of the other boxes is then opened, showing that it is empty. You are given the option to switch your choice to the other remaining box. Should you switch? Why?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning