The air pressure in the cabin of a passenger plane is modelled by the equation: P(x) = 3cos(x/2) - sin(x/2) where x is the altitude. Express P(x) in the form Rcos(x/2 +z) where z is acute and in degrees and then find the maximum pressure

This is a classic example of a trigonometry problem using the angle addition formulae. Recall that cos(A+B) = cos(A)cos(B) - sin(A)sin(B). Express R(x/2 -z) in similar form: Rcos(x/2 +z) = Rcos(x/2)cos(z) - Rsin(x/2)sin(z) = 3cos(x/2) - sin(x/2) = P(x) we can now equate coefficients: (1) Rcos(z) = 3 and (2) Rsin(z) = 1 , squaring both equations (1) and (2) and adding them together gives R2(cos2(z) + sin2(z)) = 10 recall that cos2(z) + sin2(z) = 1 therefore R = sqrt(10), dividing equations (1) and (2) gives tan(z) = 1/3 gives the acute angle z = 18.4 degrees. So P(x) = 10-1/2cos( x/2+ 18.4) , the maximum value of P(x) will occur when cos = 1 (maximum value a cosine function can take) therefore R = 10-1/2 is the maximum pressure in the cabin.

CP
Answered by Caspar P. Maths tutor

2871 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

log3 (9y + b) – log3 (2y – b) = 2, Find y in terms of b.


Simplify the following expression to a fraction in its simplest form: [(4x^2 + 6x)/(2x^2 - x -6)] - [(12)/(x^2 - x - 2)]


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0 (a) Find (i) dy/d x (ii) d^2y/dx^2 (b) Verify that C has a stationary point when x = 4 (c) Determine the nature of this stationary point, giving a reason for your answer.


A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning