Express f(x) = ln(x+1) as an infinite series in ascending powers of x up to the 3rd power of x

Recall that the Maclaurin series for f(x) is f(x) = f(0) + f'(0)x + f''(0)x2/2! + ... + f(r)(0)xr/r! + ... Here f(0) = ln(1+0) = ln1 = 0 , f'(x) = 1/(1+x) using the chain rule. f'(0) = 1/1 = 1 , f''(x) = -1/(1+x)2 , f''(0) = -1/(1)2 = -1 , f'''(x) = 2/(1+x)3 , f'''(0) = 2/(1)3 = 2, Substituting these into the general expression for the Maclaurin series: (to 3rd degree) gives: ln(1+x) = 0 + 1x + -1/2! x2 + 2/3! x3 , ln(1+x) = x - x2/2 + x3/3

CP
Answered by Caspar P. Further Mathematics tutor

2254 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Cube roots of 8?


Using your knowledge of complex numbers, such as De Moivre's and Euler's formulae, verify the trigonometric identities for the double angle.


Find all of the roots of unity, Zn, in the case that (Zn)^6=1


Prove that "6^n + 9" is divisible by 5 for all natural numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning