Express f(x) = ln(x+1) as an infinite series in ascending powers of x up to the 3rd power of x

Recall that the Maclaurin series for f(x) is f(x) = f(0) + f'(0)x + f''(0)x2/2! + ... + f(r)(0)xr/r! + ... Here f(0) = ln(1+0) = ln1 = 0 , f'(x) = 1/(1+x) using the chain rule. f'(0) = 1/1 = 1 , f''(x) = -1/(1+x)2 , f''(0) = -1/(1)2 = -1 , f'''(x) = 2/(1+x)3 , f'''(0) = 2/(1)3 = 2, Substituting these into the general expression for the Maclaurin series: (to 3rd degree) gives: ln(1+x) = 0 + 1x + -1/2! x2 + 2/3! x3 , ln(1+x) = x - x2/2 + x3/3

Related Further Mathematics A Level answers

All answers ▸

Does the following matrix A = (2 2 // 3 9) (upper row then lower row) have an inverse? If the matrix A^2 is applied as a transformation to a triangle T, by what factor will the area of the triangle change under the transformation?


f(x) = 9x^3 – 33x^2 –55x – 25. Given that x = 5 is a solution of the equation f(x) = 0, use an algebraic method to solve f(x) = 0 completely.


Two planes have eqns r.(3i – 4j + 2k) = 5 and r = λ (2i + j + 5k) + μ(i – j – 2k), where λ and μ are scalar parameters. Find the acute angle between the planes, giving your answer to the nearest degree.


A particle is undergoing circular motion in a horizontal circle, that lies within the smooth surface of a hemispherical bowl of radius 4r. Find the distance OC (explained in diagram) if the angular acceleration of the particle is equal to root (3g/8r).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences