When and how do I use the product rule for differentiation?

As the name suggests, the product rule is used to differentiate a function in which a product of 2 expressions in x exists. This means the two expressions in x are multiplied by each other, even when the function is expressed in its simplest form. An example would be y=x3e2x. The product rule is written by generalising one expression in x as u and the other as v: 

If y=u*v then

dy/dx= udv/dx + vdu/dx

This means that, to dfferentiate, we multiply each expression in x by the derivative of the other and add the results. This is illustrated by the example below: 

 y=x3e2x

let u= x3                 v=e2x

du/dx = 3x2            dv/dx= 2e2x

for this example: 

                       dy/dx = u dv/dx + v du/dx

                                = x3*2e2x +  e2x*3x2 

                                = e2x(2x3 + 3x2)

Answered by Rachel T. Maths tutor

10814 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the integral of ((3x-2)/(6x^2-8x+3)) with respect to x between x=2 and x=1. (hint use substitution u=denominator)


Find the area bounded by the curve y=(sin(x))^2 and the x-axis, between the points x=0 and x=pi/2


Find dy/dx for (x^2)(y^3) + ln(x^y) = 5sin(6x)/x^(1/2)


Given two functions x = at^3 and y = 4a, find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences