Find the integral between 4 and 1 of x^(3/2)-1 with respect to x

When we integrate a function we must first raise the power of x in each term by one. The first term therefore becomes x^(5/2). The second term can be thought of as x^0 which we know that any number to the power zero is equal to 1, so the second term becomes x. We must then divide by the new power of x. In the first term we have 1 divided by 5/2 which is equal to 2/5 and in the second term we have -1 divided by 1 which is still equal to -1. Because the integral has limits we do not need to include an integration constant. The integrated expression is (2/5)x^(5/2) - x. The next step in solving this problem is to substitute the limits into the equation. What we do here is take away the value of our integrated function at the lower bound from the value of the integrated function at the upper bound. This gives us the calculation ((2/5) x 4^(5/2) - 4) - ((2/5) x 1^(5/2) - 1). This can be evaluated on your calculator to give 9.4.

Answered by Alex B. Maths tutor

3685 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How does integration by parts work ad when to use it?


(Follow on from previous question) A curve has equation y= x^2+3x+2. Use your previous results to i) find the vertex of the curve ii) find the equation of the line of symmetry of the curve


Find the Binomial Expansion of (1-5x)^4.


Solve the following equation for k, giving your answers to 4 decimal places where necessary: 3tan(k)-1=sec^2(k)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences