Prove that √2 is irrational

Begin by assuming that √2 is rational, and can therefore be written as √2 = p\q where p and q are coprime integers.By squaring both sides, you get the result 2 = p2\q2, which rearranges to show that p2=2q2.This implies that p2 is even, and therefore p must also be even. Therefore p=2a where a is an integer.By substituting p=2a into our equation, and then rearranging, we get the result q2=2a2This implies that q2 is even, and therefore q must also be even, so we can write q=2b, where b is an integer.From this it follows that √2 = p/q = 2a/2b which shows that p and q have a common factor of 2, however, we have stated that p and q are coprime, and therefore we have a contradiction. Our original assumption must therefore be false, and therefore √2 must be irrational.

AS
Answered by Anika S. Maths tutor

3121 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equations: 2x-3y=16 x+2y=-6


Write 2x^(2) + 9x + 1 in the from a(x+m)^(2) + n, and hence solve 2x^(2) + 9x + 1= 0, leaving your answer in surd form.


expand and simplify (x+3)(x-7)


Give an example of a real-world system that would be described by a quadratic equation. Explain the significance of the two real roots, a repeated root, and undefined roots. Is there any significance to a positive or a negative answer in your example?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning