y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.

y=(x+4)(6x-7)y=6x2+17x-28dy\dx = 12x + 17To find the x coordinate of the stationary points of y, let dy\dx=012x+17=0x=-17\12

AS
Answered by Anika S. Further Mathematics tutor

1920 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


Show that 2cos^2(x) = 2 - 2sin^2(x) and hence solve 2cos^2(x) + 3sin(x) = 3 for 0<x<180


What is the distance between two points with x-coordinates 4 and 8 on the straight line with the equation y=(3/4)x-2


y=(6x^9 +x^8)/(2x^4), work out the value of d^2y/dx^2 when x=0.5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning