y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.

y=(x+4)(6x-7)y=6x2+17x-28dy\dx = 12x + 17To find the x coordinate of the stationary points of y, let dy\dx=012x+17=0x=-17\12

AS
Answered by Anika S. Further Mathematics tutor

1619 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


Work out the coordinates for the stationary point of y = x^2 + 3x + 4


Use differentiation to show the function f(x)=2x^3–12x^2+25x–11 is an increasing function for all values of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences