y=(6x^9 +x^8)/(2x^4), work out the value of d^2y/dx^2 when x=0.5

The question can be represented by the notation d2y/dx2|x=0.5, meaning the second derivative of y with respect to x resolved at x=0.5. Since y is in the form f(x)/g(x), the quotient rule could be used, but it would be much easier to first simplify y to 3x5 + x4/2, using the index rules (xm/xn = xm-n). Once y is in this form we can easily differentiate both terms with respect to x twice, giving dy/dx = 15x4 + 2x3, and then d2y/dx2 = 60x3 + 6x2. At this point we can substitute in x=0.5, giving d2y/dx2|x=0.5 = 60(0.5)3 + 6(0.5)2 = 9.

Related Further Mathematics GCSE answers

All answers ▸

Solve the simultaneous equations xy=2 and y=3x+5.


A curve has equation: y = x^3 - 3x^2 + 5. Show that the curve has a minimum point when x = 2.


What is the distance between two points with x-coordinates 4 and 8 on the straight line with the equation y=(3/4)x-2


The curve C has equation f(x) = 4(x^1.5) + 48/(x^0.5) - 8^0.5 for x > 0. (a) Find the exact coordinates of the stationary point of C. (b) Determine whether the stationary point is a maximum or minimum.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences