For all values of x, f(x) = (x + 1)^2 and g(x) = 2(x-1). Show that gf(x) = 2x(x + 2) and find g^-1(7)

gf(x) means you are applying the function f to x (giving you f(x)) and then you are applying the function g to f(x). Since g(x) = 2(x-1), g(f(x)) =2(f(x)-1). This means after substitution, gf(x) = 2((x+1)2 -1), expanding and simplifying this gives the answer.g-1( x) is the inverse function of g(x). Lets call g(y) = x, hence x = 2(y-1), rearrange this to make y the subject. This will give you y = (x + 2)/2. let y = g-1(x), hence g-1(x) = (x + 2)/2. Now we substitute x = 7 and get the answer 9/2.

Answered by Arya P. Maths tutor

7785 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations..... 3x - y + 3 = 11 & 2x^2 + y^2 + 3 = 102 where X and Y are both positive integers.


There are 892 litres of oil in Mr Aston’s oil tank. He uses 18.7 litres of oil each day. Estimate the number of days it will take him to use all the oil in the tank.


Make x the subject of the formula 4(2x-y) = 3ax - 5


a)By completing the square, prove the quadratic formula starting from ax^2+bx+c=0, b) hence, or otherwise solve 3x^2 + 7x -2= 9, to 3s.f.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences