Solve algebraically the simultaneous equations 2x^2-y^2=17 and x+2y=1

To solve these equations, we have to rearrange the second equation to make x ‘the subject’ and then we can substitute it into the first one. First, subtract 2y from both sides so x=1-2yNext substitute this into the first equation, so 2(1-2y)2-y2=17Now expand the brackets. 2-8y+8y2-y2=17rearrange to form a quadratic equation: 7y2-8y-15=0now, factorise this: (7y-15)(y+1)=0this can be solved by considering y+1=0 and 7y-15=0, giving the solutions y=-1 and y=15/7when y=-1, x=1+2=3when y=15/7, x=1-30/7=-23/7

Answered by Benjamin H. Maths tutor

12630 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

2x^2-6x+5 can be written in the form a(x -b)^ 2 + c where a, b and c are positive numbers. Find a,b and c.


Can you explain the quadratic formula?


The area of a square is 49cm^2. The perimeter of the square is equal to the circumference of a circle. Work out the radius of the circle. Give your answer to 1 decimal place.


Given: 𝑓(𝑥) = 𝑎𝑥^3 + 𝑏𝑥^2 − 3 and 𝑓"(−2) = 0. If it is further given that the point (−3; 6) lies on the graph of 𝑓. Show that 𝑎 = 1/3 and 𝑏 = 2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences