Prove that (3n+1)²-(3n-1)² is a multiple of 4 taking into account that n is a positive integer value

  1. Square the brackets (3n+1)²= (3n+1)(3n+1) = 9n²+3n+3n+1 = 9n²+6n+1 (3n-1)²= (3n-1)(3n-1) = 9n²-3n-3n+1 = 9n²-6n+12. Write out the full equation (9n²+6n+1) - (9n²-6n+1) = 9n²+6n+1-9n²+6n-1 = 12n3. Explain your reasoning 12n is divisible by 4 as (12n÷4) equals 3n therefore (3n+1)²-(3n-1)² is a multiple of 4 as 4 goes into 12 a total of 3 times and 3 is an integer
Answered by Nalin K. Maths tutor

5458 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand the following brackets, (6x^2-4)(2x+3)


I need help in Algebra as i struggle a lot with Algebra.


Solve the quadratic equation X^2+3X+2=0 by factorisation.


If the probability of picking a red ball out of bag A is 2/5 and the probability of picking a red ball out of bag B is 3/7, what is the chance that you will pick exactly 2 red balls if you pick 2 balls from A and 1 ball from B? The balls are not replaced.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences